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ABSTRACT

Least-squares reverse time migration (LSRTM) is a seismic imaging method
that can provide higher-resolution images of the subsurface structures compared to other
methods. However, LSRTM is computationally expensive. To reduce the computational
time of LSRTM, GPU can be utilized. This leads to the objective of this work which
is to develop a GPU implementation of LSRTM. In this work, the two-dimensional
first-order acoustic wave equations were solved using the second-order finite difference
method on a staggered grid, and a perfectly matched layer was used as an absorbing
boundary condition. The adjoint-state method was used to compute the gradient of the
objective function concerning model parameters. A linear conjugate gradient method
was used to minimize the objective function. Both forward- and backward-propagation
of wavefields using the finite-difference method were performed on a single GPU using
the NVIDIA CUDA library. For verification purposes, the GPU program of LSRTM
was applied to a synthetic data set generated from the Marmousi model. Numerical
results showed that LSRTM could provide an image with higher quality compared to a
conventional RTM image. The GPU-version of LSRTM has acquired a speedup factor
of 12-to-13 times compared to the serial CPU-version of LSRTM.
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CHAPTER I
INTRODUCTION

1.1 Introduction
The ultimate goal of seismic exploration is to determine the location of oil

and gas reservoirs. To be able to accurately locate the reservoir, a transformation of a

seismic shot record into a geologic structure is needed and that tool is named as seis-

mic imaging. The most widely used seismic imaging technique is reflection seismic

imaging in which reflection data are used to construct an image of the subsurface struc-

tures. In reflection seismic imaging, three main methods to image a geologic model

are Kirchoff migration, one-way wave equation migration, and reverse time migration

(RTM). Kirchoff migration is a ray-based method that efficiently image steeply dipping

structure, but this method has its own limit since the ray-based algorithm always face

the shadow zone which is an area that the rays can not reach. Therefore, the complex

geologic structure can not be fully delineated by Kirchoff migration. To deal with the

complex structure, the one-way wave equation migration is presented. This method uses

the paraxial approximation to propagate a wavefield, and the shadow zone is not existed

since this is the wave-equation based method. However, the one-way wave equation

migration is restricted by the shooting angle of the wavefield. More detailed analysis

of Kirchhoff and one-way wave migration can be found in Etgen et al. (2009). On the

other hand, RTM algorithm utilizes two-way wave equation, neither shadow-zoned nor

steeply dipping reflector problem are exists. Nevertheless, RTM is a depth migration

that needs an accurate velocity model to heighten its efficiency (Chang and McMechan,

1986). The RTM method consists of three steps. First, the wavefield is propagated for-

ward in time from source through the velocity model to the receivers. This wavefield can

be named as source wavefield which will be used later on this scheme. The simulation

of source wavefield also grants another product which is a seismogram or seismic data.

Second, the seismogram will be the source of receivers wavefield that propagates back-

ward in time. Lastly, a zero-lagged crosscorrelation of source and receiver wavefields



Phudit Sombutsirinun Introduction / 2

yields a reflectivity-like image, since the point that source and receiver wavefields share

the same path at the same time is the point of the reflector. However, using the two-way

wave equation grants an ability to simulate both transmitted and reflected wave. With

this condition, the crosscorrelation may not correspond to reflection from a reflector.

This problem leads to the crosstalk noise in the RTM image. A schematic of RTM is

picturized in Figure 1.1.

Figure 1.1: A schematic of RTM, adapted Etgen et al. (2009) and Liu et al. (2011).

The RTM method was first proposed as a post-stack migration method by Baysal et al.

(1983) and McMechan (1983). At that time, the algorithm of the post-stack migration is

just a performing of a finite-difference calculation backward in time. Later then, Chang

and McMechan (1986) proposed a pre-stack RTM method which applies an imaging

condition or the crosscorrelation of source and receiver wavefields to produce the image

(Claerbout, 1971). As stated that RTM needs the accurate velocity model, its resolution

is also heavily affected by the complexity of a model. The RTM images are normally

corrupted with low frequency noise produced from the sharp velocity contrast in the

model and the unwanted crosscorrelation as shown in Figure 1.2 (Guitton et al., 2007).



Fac. of Grad. Studies, Mahidol Univ. M.Sc. (Physics) / 3

Figure 1.2: A migration image from RTM which corrupted by low-frequency noise from

Guitton et al. (2007)

One of the method that can improve the RTM image quality is the least-

squares reverse time migration (LSRTM) method. As its name stated, LSRTM is the

least-squares inversion implemented on RTM. Plessix (2006) exhibited how the gra-

dient of objective function can be obtained by the crosscorrelation of forward- and

backward- propagating wavefields. Hence, LSRTM is literally the execution of RTM

iteratively which should improve the result. LSRTM has been proposed since Bourgeois

et al. (1989) under the name of a linearized inversion method which can be seen as

an improvement of the pre-stack RTM of Chang and McMechan (1986). Results from

Bourgeois et al. (1989)’s work are shown in Figure 1.3.

Figure 1.3: Numerical results from Bourgeois et al. (1989) including the test model

(left), time reversal migration (upper right), and linearized inversion image (lower right).

LSRTM also reduces the noise from acquisition footprint and RTM artifacts (Dai and



Phudit Sombutsirinun Introduction / 4

Schuster, 2013). Despite the better resolution of the image, LSRTM was not commonly

used due to its high requirement of computational storage and time (Dussaud et al.,

2008). Since, RTM algorithm needs the vast storage for storing every time slice of the

source wavefield in order to crosscorrelate with the receivers wavefield in the imag-

ing condition step. Dussaud et al. (2008) described and analyzed the existing meth-

ods to solve this problem, and a widely used approach is the wavefield reconstruction.

The wavefield reconstruction for dissipative boundary condition requires the storage of

wavefield at the boundary at every timestep. These boundary wavefields will be used as

initial data to reconstruct the source wavefield backward in time. An example of bound-

ary saving is shown in Yang et al. (2014)’s work for the eighth-order finite difference

stencil in Figure 1.4. There is also another factor that affects the migration image. Feng

and Schuster (2017) demonstrated that their elastic LSRTM image has a better quality

than acoustic LSRTM. Furthermore, Dutta and Schuster (2014) also shown that the con-

vergence of the objective function can be quickening by using visco-acoustic LSRTM.

Figure 1.4: A 2-D sketch of required points for boundary saving for regular grid finite

difference of Dussaud et al. (2008) scheme for eighth-order finite difference stencil from

Yang et al. (2014)

For the computational cost issue of LSRTM, the GPU programming is the

main solution due to GPU ability to efficiently process many data at the same time. A

GPU implementation of seismic imaging gained its popularity since the introduction of
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finite-difference (FD) calculation on GPUs using CUDA by Micikevicius (2009). The

main idea of Micikevicius (2009) is to utilize the shared memory to store the data tiles

along with the halo nodes. The halo nodes or halos are FD stencil of the boundary data

on the data tile. An example of data tiles and halos is shown in Figure 1.5.

Figure 1.5: 16 × 16 data tiles and halos for 8th-order FD stencil from Micikevicius

(2009)

Later, Abdelkhalek et al. (2009) implemented Micikevicius (2009) method on RTM and

achieved 30- and 10-times speedup for modeling and RTM schemes, respectively. Ab-

delkhalek et al. (2009) also stated a major problem of multiple GPUs programming

which is a bottle neck problem. Due to a low transfer rate of GPU, the speedup ra-

tio between CPU and GPU gets lower with more domain decomposition. There are also

published software packages that also boost up the popularity of GPU implementation in

seismic methodology. For instance, Weiss and Shragge (2013) who also adopted Micike-

vicius (2009) method and published 2D and 3D GPU-based anisotropic elastic modeling

code. Weiss and Shragge (2013)’s ewef2d grants 10 times speedup, whereas ewefd3d

yields 16-times speedup for single GPU and 28-times speedup for two GPUs. This

work also suggested the CUDA’s P2P communication between multiple GPUs within

the same node over the MPI-based communication. Yang (2015) published a 2D time-

domain acoustic full-waveform inversion (FWI). Yang (2015) attemped to improve an

efficiency of an optimization scheme with paralled reduction, but the acquired speedup

ratio was hindered by the effect of FD calculation.
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1.2 Objective
In the best of my knowledge, there is no open-source GPU implementation

of LSRTM. Therefore, the objective of this work is to implement 2D acoustic LSRTM

on a GPU using CUDA and publish it as an open-source software. In Yang (2015)’s

FWI open-source code, a regular FD grid and the zero-degree Clayton-Enquist absorb-

ing boundary condition were used. On the contrary, my open-source code will use a

staggered FD grid and perfectly matched layers (PML) since the staggered grid is more

efficient than the regular grid and PML is more efficient and more effective than the

Clayton-Enquist absorbing boundary condtion.

1.3 Thesis Outline
This thesis is divided into 5 chapters. After outlining the entire thesis in the

first chapter, every methods used in LSRTM are provided in Chapter 2. The simulation

of wavefield propagation through the medium by the first-order coupled acoustic wave

equations along with the finite difference method are described first in Chapter 2. Then,

the gradient computation, the inversion scheme of LSRTM method also explained. The

developed GPU-based LSRTM source code, named PS_LSRTM, and GPU implemen-

tation are presented in Chapter 3. A flowchart of the PS_LSRTM algorithm is presented

and each part of the algorithm is fully explained. The numerical results from this source

code such as seismic shot record, migrated image from RTM method, optimized mi-

grated image from LSRTM method, convergent rate graph, and speedup ratio are shown

and discussed in Chapter 4 along with the model and acquisition parameters. Lastly, the

thorough content of this thesis will be summed up in Chapter 5.
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CHAPTER II
METHODS

In this work, seismic wave propagation is approximately governed by the

first-order coupled acoustic wave equations. Therefore, the simulation of acoustic wave

by finite difference method will be stated in this chapter first. Then, LSRTM method

will be furthur explained in detail.

2.1 First-Order Coupled Acoustic Wave Equations
Acoustic wave is a mechanical wave which needs a medium to propagate. A

change of pressure field in time can be affected by the medium properties such as bulk

modulus, density, and a change of particle motion velocity and vice versa. Hence, the

two-dimensional first-order coupled acoustic wave equations can be expressed as

∂p

∂t
= −K

(
∂vx
∂x

+
∂vz
∂z

)
(2.1)

∂vx
∂t

= −1

ρ

∂p

∂x
(2.2)

∂vz
∂t

= −1

ρ

∂p

∂z
(2.3)

where p is pressure wavefield, vx and vz are particle motion velocity with x and z sub-

script stand for horizontal and vertical direction, respectively. K and ρ represent bulk

modulus and density of the medium, while the wave velocity in medium (c) can be

calculated from c =
√
K/ρ. The above equations are an acoustic approximation of

P-SV equation of motions in 2D from Levander (1988), and the similar form of these

first-order couple acoustic wave equations can be seen from the work of Zhou (2004).
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2.2 Perfectly-Matched Layer
By solving acoustic wave equation, a propagation of wave or wave modeling

can be achieved. Nevertheless, an actual wave propagate in the boundless area which can

not be achieved by numerical modeling due to the limit of problem size. The solution to

this problem is the artificial layer to absorb the wave energy or perfectly-matched layer

(PML). PML is first proposed by Berenger (1994) and it becomes the most widely used

boundary condition for modeling in an unbounded domain. The significant part of the

PML method is the PML damping function (σ(x)), which is the function of depth that

defines how much the wave amplitude will be damped at the boundary. According to

Colino and Tsogka (2001), the PML damping function is

σ(x) = σ0

(x
δ

)2
(2.4)

σ0 = log

(
1

R

)
3v

2δ
(2.5)

R is a reflectivity coefficient that usually have value around 10−7 to 10−4 and δ is a PML

thickness. The next step is to apply the coordinate stretching, which is

∂

∂x̂
=

1

1 + iσ(x)
ω

∂

∂x
(2.6)

As equation (2.5) and (2.6) show, the implementation is one-directional. Hence, the

pressure wavefield in equation (2.1) is needed to be split into

∂px
∂t

= −K
(
∂vx
∂x

)
(2.7)

∂pz
∂t

= −K
(
∂vz
∂z

)
(2.8)

where p = px + pz. Moreover, the stretched coordinate is in a frequency domain, so

the wave equations must be transformed into the frequency domain as well. Henceforth,

equations (2.7), (2.8), (2.2), and (2.3) will go through the Fourier transformation

−iωp̂x = −K
(
∂v̂x
∂x

)
(2.9)

−iωp̂z = −K
(
∂v̂z
∂z

)
(2.10)

−iωv̂x = −1

ρ

∂p̂

∂x
(2.11)

−iωv̂z = −1

ρ

∂p̂

∂z
(2.12)
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Plug the stretched coordinate (equation (2.6)) into equations (2.9), (2.10), (2.11), and

(2.12). With an arrangement and conversion back to time domain into these equations,

the split-field acoustic wave equations with PML boundary are

∂px
∂t

+ σ(x)px = −K∂vx
∂x

(2.13)

∂pz
∂t

+ σ(z)pz = −K∂vz
∂z

(2.14)

∂vx
∂t

+ σ(x)vx = −1

ρ

∂p

∂x
(2.15)

∂vz
∂t

+ σ(z)vz = −1

ρ

∂p

∂z
(2.16)

Equations (2.13), (2.14), (2.15), and (2.16) will be solved by finite difference method to

resemble the wave propagation in the unbounded domain.

2.3 Solving Acoustic Wave Equation by Finite Difference Method
Staggered Grid

To be able to simulate the wavefield by finite difference method, the geologic

model is divided into mesh with grid size h in x and z direction. The model parameters

and modeling variables are stored in each node in the model. How those variables are

stored will tell a type of grid using in modeling. In regular grid, every variables are stored

on the same node. On the other hand, the variables are stored on node and between node

in staggered grid which can be seen in Figure 2.1 with indices i and j represent x and z,

respectively.
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Figure 2.1: Variables storage in 2D staggered FD grid, where i and j are indices for hor-

izontal and vertical direction, respectively. A blue circle reprensents pressure wavefield

and bulk modulus, while green and orange triangel represent particle motion velocity

and the inverse of density.

With first-order coupled equations being used, staggered grids are suitable due to stabil-

ity (Virieux, 1986). Furthermore, staggered grids tend to have more potential in avoid-

ing odd-even decoupling that can lead to checker board pattern in the numerical solution

(Neill and Hashemi, 2018). The staggered FD grid solves a spatial and temportal deriva-

tives with the pattern shown in Figure 2.2 and 2.3.

Figure 2.2: Spatial stencil in 2D staggered FD grid for the first-order coupled acoustic

wave equation.
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Figure 2.3: Advance time stepping in staggered FD grid, where k is a time index.

Figure 2.2 shows the second-order FD order for the first-order coupled acoustic wave

equations. A value of vx on coordinate (i+1/2, j) is solved by the central FD calculation

of p at (i+ 1, j) and (i, j). Similarly, the value of vz on coordinate (i− 1/2, j) is solved

by the value of p at (i, j + 1) and (i, j). For the FD calculation of px and pz at (i, j),

the adjacent nodes of vx and vz are used, respectively. The spatial FD calculation of p

at time index k together with the value of vx and vz at time index k − 1/2 are used to

advance the time step of vx and vz to the time index k + 1/2. Similarly, the advance

time stepping of p from time index k to k + 1 used the FD calculation of vx and vz at

time index k+ 1/2. This procedure is depicted in Figure 2.3. Putting the FD stencil and

advance time stepping scheme to equations eqrefpmlpx, (2.14), (2.15), and (2.16) yield

the discrete form of the first-order coupled acoustic wave equation with PML boundary.
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pk+1
xi,j
− pkxi,j

∆t
+ σi,jp

k
xi,j

= −Ki,j

(
v
k+1/2
xi+1/2,j − v

k+1/2
xi−1/2,j

∆x

)
(2.17)

pk+1
zi,j
− pkzi,j

∆t
+ σi,jp

k
zi,j

= −Ki,j

(
v
k+1/2
zi,j+1/2 − v

k+1/2
zi,j+1/2

∆z

)
(2.18)

v
k+1/2
xi,j − vk−1/2xi,j

∆t
+ σi,jv

k−1/2
xi,j

= −
(
bi,j + bi+1,j

2

)(
pki+1,j − pki,j

∆x

)
(2.19)

v
k+1/2
zi,j − vk−1/2zi,j

∆t
+ σi,jv

k−1/2
zi,j

= −
(
bi,j + bi,j+1

2

)(
pki,j+1 − pki,j

∆z

)
(2.20)

Where b is buoyancy or the inverse of density ρ, and k stands for time index t.

2.4 Acoustic Least-Squares Reverse Time Migration
The forward modeling scheme which perform a modeling to the model to

achieve the seismogram can be written in matrix form as

D = Lm (2.21)

where L is the forward modeling operator. The product of operator L can be differ

according to an operand. If it acts on the true model, the seismogram D will be the

result. On the other hand, operating L on an initial model of an inversion scheme will

grant the simulated seimogram d. The goal of the least-squares inversion scheme is to

find the model m that minimize the difference between these two parameters. To clarify

that, the model m is sought to minimize the objective function

f(m) =
1

2

Ns∑
is

‖Lism− Dis‖2 (2.22)

where Ns is the number of sources and is is the index of source number. Operator L that

acted on the model parameter is conventional, but, in LSRTM method, variable m is a

migated image. To clarify this, the algorithm of modeling the image is presented.

A derivation can be done by perturbation theory. Considering the constant

density problem, the model parameter can be extracted into

K = K0 + δK (2.23)
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that produces the wavefield

p = p0 + δp (2.24)

vx = vx0 + δvx (2.25)

vz = vz0 + δvz (2.26)

The subscript 0 represents the background value of the model, while the δ represent

the perturbed value. Substituting those extracted parameters into the wave equation

(equation (2.1)) gives

∂

∂t
(p0 + δp) + (K0 + δK)

(
∂

∂x
(vx0 + δvx) +

∂

∂z
(vz0 + δvz)

)
= 0 (2.27)

Neglect the multiplication of δK and δu and subtract equation (2.27) by equation (2.1)

yields

∂δp

∂t
+K0

(
∂δvx
∂x

+
∂δvz
∂z

)
= −δK

(
∂δvx0
∂x

+
∂δvz0
∂z

)
= −δK

K0

K0

(
∂δvx0
∂x

+
∂δvz0
∂z

)
= mK0

(
∂δvx0
∂x

+
∂δvz0
∂z

)
(2.28)

where m = δK
K0

is a fractional bulk modulus that is used as the image of reflectivity. Ap-

ply this scheme to every wave equations to acquire the wave equations used for modeling

the migrated image.

∂δp

∂t
+K0

(
∂δvx
∂x

+
∂δvz
∂z

)
= mK0

(
∂δvx0
∂x

+
∂δvz0
∂z

)
(2.29)

∂δvx
∂t

+
1

ρ

∂δp

∂x
= 0 (2.30)

∂δvz
∂t

+
1

ρ

∂δp

∂z
= 0 (2.31)

Carry on with the LSRTM algorithm, the optimization of m value can be

done by using the gradient descent method such as conjugate gradient method (CG)

which is implemented in this work. The main idea of gradient descent method is to

update the model by the gradient of objective function (equation (2.22)) which can

achieved by taking the derivative of f respects to m.

git+1 = LT (Lmit − D) (2.32)
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where g is the gradient of objective function, and superscript it is used as an index of

iteration. Then, CG algorithm will adjust this gradient g into z by factor β to speed

up the convergent rate and use it to update the model by the factor α of z. The CG

algorithm, following Dai and Schuster (2013) will be formulated as

β =
[git+1]

T git+1

[git]T git
(2.33)

zit+1 = −git+1 + βzit (2.34)

α =
[zit+1]

T git+1[
Lzit+1

]T Lzit+1
(2.35)

mit+1 = mit + αzit+1 (2.36)

2.5 Gradient Computation using the Adjoint-State Method
By using the adjoint-state method, the gradient of objective function that

is needed in LSRTM method can be computed by modeling forward- and backward-

propagation wavefields. Apart from gradient computation that will be used in the inver-

sion scheme, the derivation of adjoint-state method can also lead to the RTM method.

Now, the adjoint-state method will be applied to the LSRTM method following the pro-

cedure presented in Plessix (2006). For simplicity, the acoustic wave equations will be

in the form of

∂p

∂t
+K∇ · v = 0 (2.37)

∂v
∂t

+
1

ρ
∇p = 0 (2.38)

where v consists of vx and vz. The forward modeling can be summed up into

F (u(m),m) = 0 (2.39)

where u is a state variable which is wavefields variables for this occasion, and m is

model parameters which consists only K due to constant density approximation. While,

the objective function is

h(u(m),m) =
1

2

∫ T

0

∫
(D − d)2dxdt (2.40)
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where T is the record length, D is the seismogram acquired from true velocity model,

and d is the seismogram acquired from simulation. A reminder that seismogram is the

pressure field at the receivers position at every timestep (p(xr, t)). Functional h and F

will be used to form the Lagrangian (L) that can be used for compute the gradient of

objective function and also backward-propagation modeling.

L(ũ, λ̃,m) = h(ũ,m) +
〈
λ̃, F (ũ,m)

〉
(2.41)

where λ represents the adjoint-variable which consists of the adjoint variable of p (λp)

and v (λv). While, a symbol tilde is identified for the benefit of derivation, and <,>

indicates the inner product. Substitute equations (2.37), (2.38), and (2.40) into equation

(2.41) yields

L(ũ, λ̃,m) =

∫ T

0

∫
1

2
(D−d)2dxdt−

∫ T

0

〈
λ̃p,

∂p̃

∂t
+K∇·ṽ

〉
dt−

∫ T

0

〈
λ̃v,

∂ṽ
∂t

+
1

ρ
∇p̃
〉
dt

(2.42)

Since the goal is the derivative of L by state variables, which are p̃ and ṽ, By taking the

derivative of L by state variables equal to zero, the solution of λ is hope to be achieved.

Hence, the arrangement of equation (2.42) is needed to make it easier. That arrange-

ment can be done by integration by parts to swap the state variables out of temporal

derivatives, and product rules for spatial derivation. Considering temporal derivative∫ T

0

〈
λ̃p,

∂p̃

∂t

〉
dt =

∫ T

0

∫
λ̃p
∂p̃

∂t
dxdt

Applying integration by parts by define u = λ̃p and dv = ∂p̃
∂t
dt∫ T

0

∫
λ̃p
∂p̃

∂t
dxdt = λ̃pp̃|T0 −

∫ T

0

∫
p̃
∂λ̃p
∂t

dxdt

= −
∫ T

0

〈
p̃,
∂λ̃p
∂t

〉
dt (2.43)

The first term of equation (2.43) is depleted by the initial condition of p (p(0) = 0) and

the terminal condition λ̃p(T ) = 0. Similarly,∫ T

0

〈
λ̃v,

∂ṽ
∂t

〉
dt = −

∫ T

0

〈
ṽ,
∂λ̃v

∂t

〉
dt (2.44)

For the spatial derivation, applying product rule grants∫ T

0

∫
λ̃pK∇ · ṽdxdt =

∫ T

0

∫
∇ ·
(
Kλ̃pṽ

)
dxdt−

∫ T

0

∫
ṽ · ∇

(
Kλ̃p

)
dxdt



Phudit Sombutsirinun Methods / 16

Notice that the first term can be changed to surface integral, and an approximation of

the dot product between vector field and surface integral is equal to zero (ṽ ·da = 0) has

been made. Hence, this spatial derivative term will be in the form of∫ T

0

〈
λ̃pK∇ · ṽ

〉
dt = −

∫ T

0

〈
ṽ · ∇

(
Kλ̃p

)〉
dt (2.45)

Similary, ∫ T

0

〈
λ̃v

1

ρ
∇p̃
〉
dt = −

∫ T

0

〈
p̃∇
(

1

ρ
λ̃v

)〉
dt (2.46)

Put equations (2.43), (2.44), (2.45), and (2.46) back to equation (2.42) yields

L(ũ, λ̃,m) =

∫ T

0

∫
1

2
(D − d)2dxdt+

∫ T

0

〈
p̃,
∂λ̃p
∂t

〉
dt

+

∫ T

0

〈
ṽ,∇

(
Kλ̃p

)〉
dt+

∫ T

0

〈
ṽ,
∂λ̃v

∂t

〉
dt

+

∫ T

0

〈
p̃,∇ ·

(
1

ρ
λ̃v

)〉
dt (2.47)

Then, take a derivative of L in equation (2.47) with respect to p̃ and ṽ equal to zero.

∂L
∂p̃
|p,λp,λv = (D − d) +

∂λp
∂t

+∇ · (bλv) = 0 (2.48)

∂L
∂ṽ
|v,λp,λv =

∂λv

∂t
+∇ · (Kλp) = 0 (2.49)

Equations (2.48) and (2.49) are in the form of wave equation similar to first-order cou-

pled wave equation (equations (2.37) and (2.38)). With the terminal condition λp(T ) =

0 and λv(T ) = 0, these wave equations of adjoint-state variable should be solved by

backward time stepping. These equations can also be shifted to make it looks exactly

like wave equations by multiply equation (2.48) with K, and define another state vari-

ables which are λ′p = Kλp and λ′v = 1
ρ
λv

∂λ′p
∂t

+K∇ · λ′v = −K(D − d) (2.50)

∂λ′v
∂t

+
1

ρ
∇λ′p = 0 (2.51)

After the adjoint-state variables are identified, the gradient of functional is easily ob-

tained by the derivative of L with respect to K.

∂L
∂K

=
∂h

∂K
−
∫ T

0

〈
λ,
∂F

∂K

〉
dt (2.52)
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With the only term that consists of K in forward modeling, the gradient of objective

function will be
∂L
∂K

= −
∫ T

0

〈
λp,∇ · v

〉
dt (2.53)

Solutions from equations (2.50) and (2.51) are the receiver wavefields from the resid-

ual data which similar to the receiver wavefields from seismogram in RTM. Moreover,

the gradient of objective function in equation (2.53) is a zero-laggged crosscorrelation

of source and receiver wavefields. Hence, the adjoint-state method can be viewed as

a mathematical approach of RTM method which resemblant to the work of Tarantola

(1984). In addition, equation (2.32) states that by applying operator LT to the residual

data, the gradient can be achieved. Hence, operator LT acts like RTM algorithm and

equation (2.32) is applying RTM method to the residual data. Similarly, RTM method

in matrix form can be written as m = LTD.

Every principles and methods that explained in this chapter can be concluded

into the flowchart of the LSRTM method in Figure 2.4. Start off with the image m

that achieved from them migration or the transpose of forward modeling operator L

of observed data D. Then, simulated data d will be generated by the migrated image

modeling of the RTM image. This data will be compared to the observed data to make

a residual data. By doing a migration to the residual data, the gradient of objective

function g can be achieved. The gradient will be adjusted for better convergence rate by

conjugate gradient method into an adjusted gradient z. The model will be updated by

z and step length α, and the loop is going on until the maximum number of iteration is

met.
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Figure 2.4: Flowchart of LSRTM method, where it is iteration index.
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CHAPTER III
IMPLEMENTATION

Every methods in Chapter 2 are implemented in the GPU-based LSRTM

method source code name PS_LSRTM. The further detail of the implementation is going

to be explained in this chapter. Starting off with the GPU implementation, then each part

of PS_LSRTM algorithm will be clarified.

3.1 GPU Implementation
Comparing CPU and GPU architecture in Figure 3.1 shows that GPU re-

sources are devoted to data processing more than CPU. Therefore, the algorithm which

deals with a large pile of data like LSRTM should perform better using GPU program-

ming. In addition, the efficiency of GPU programming can be depicted in Figure 3.2.

Figure 3.1: CPU and GPU architecture (NVIDIA, 2018)
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Figure 3.2: Grid of blocks and block of threads (NVIDIA, 2018)

A black arrow is a thread which represents a process in programming. For serial pro-

gramming, one thread is executed at a time. On the other hand, thousands of threads

can be executed concurrently which should result in a better performance. By using the

NVIDIA CUDA programming model, there are blocks and grids that partitioning the

threads and blocks as seen in Figure 3.2, respectively. The block can be named as block

of threads, while the grid can be called grid of blocks. The block has its own memory

resource that can be accessed between blocks which is shared memory. While, the grid

has a larger memory resource called global memory which takes a longer time to access.

Each thread in a block and a grid can be identified and individually accessed through

the CUDA built-in variable threadIdx, blockIdx, and blockDim. By doing so, a serial

code can be easily transformed into a parallel code. A prime example is presented with
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a code of two-demensional matrix additional in Figure 3.3. Noticing that instead of two

for loops, indices i and j are indexed by CUDA built-in variables. With all indices are

accessed, adding two matrices together becomes a one-line command. Figure 3.3 also

shows another main part of GPU implementation by CUDA which is kernel function.

Kernel function can be viewed as a C-language function with the execution configura-

tion syntax <<< ... >>>. This syntax is used for specification of the number of block

(B) and grid (G). The set of threads that will be processed in the kernel will be divided

according to G and B which can be either dim3 or int variables.

Figure 3.3: An example code of adding matrices in CUDA (NVIDIA, 2018)

As informed that CUDA programming uses kernel to shift the process exe-

cution onto GPU, it is also meant that the other part of program is still run on CPU. The

program that consists of serial code that run on host (CPU) and parallel code that run on

device (GPU) can be called as heterogeneous programming which is depicted by Figure

3.4. With this structure, programming in CUDA needs both host and device memory

allocation seperately. In consequences, a transfer of data between host and device is

needed and it can be done by using intrinsic function cudaMemcpy. Another trait of

CUDA programming model is also show in Figure 3.4, that trait is the scalable program-

ming. The scalable programming model allows the device with more multiprocessor to

execute the program with faster computational time than that of the less one (NVIDIA,

2018).
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Figure 3.4: Sequential execution of heterogenous programming with the detail of CUDA

built-in variables and function usage (NVIDIA, 2018).

Following Micikevicius (2009), the major part of GPU implementation will be applied

on FD calculation. In FD calculation, nodes are called for a process redundantly. In Fig-

ure 3.5, 24 neighbor nodes (halos) has to be accessed for calculating a red target node for

a 8th-order three-dimensional FD stencil. Moreover, the communication between host

and device memory heavily affects the computational runtime. Therefore, this problem

is needed to be dealth with, and the chosen solution is the usage of shared memory.
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Figure 3.5: 8th-order 3D FD Stencil, where red cube represents the target node

(NVIDIA, 2018)

Unlike the work of Micikevicius (2009), the governing equations in this work are the

first-order coupled acoustic wave equations that solved by the second-order FD on stag-

gered gird. Therefore, the form of data tiles like Figure 1.5 must be changed. According

to the FD stencil in Figure 2.2, the data tile in the shared memory that used in the FD

calculation is depicted by Figure 3.6, where u and w represent vz and vx, respectively.

B in the blue box is the block size that defined in the kernel, while the halo boxes size

are a node each.

Figure 3.6: Shared memory used in FD stencil for staggered grid of the first-order cou-

pled acoustic wave equation

To maximize the shared memory capability, an ideal implementation is to define the

block size to the maximum threads per block. However, that naive method cannot be

done due to the halos. Using the device used in this work as an example, if the maximum

threads per block is 1024, assign the size ofB as 32×32 will result into (32+2)×(32+2)-
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4 which is 1124 threads. Moreover, the appropriate size should be dividable by the

number of warp size which is 32 in this device. The warp size tells how many threads

are accesed for processing at the same time. With these conditions, the block size for

FD kernel in this work will be set as 24×24.

3.2 PS_LSRTM Algorithm
A GPU-implemented LSRTM algorithm, PS_LSRTM, is constructed for the

purpose of testing the LSRTM capability in imaging and also testing the speedup of com-

putation runtime of a GPU-based code to a CPU-based code. A workflow of PS_LSRTM

is presented in Figure 3.7, this workflow is used to operate the LSRTM algorithm in Fig-

ure 2.4. Next, each procedure in PS_LSRTM algorithm will be explained seperately in

each section in this chapter.
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Figure 3.7: PS_LSRTM workflow

3.3 Model Parameterization
Model parameterizarion is a process that define the required model parame-

ters for the algorithm. First, a velocity model will be defined or loaded into the program

first. The variables that needed to be defined to cope with the model are model size
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horizontally (nx), vertically (nz), and mesh size (h). Apart from those variables, there

is another one that need to be defined which is boundary length (b) for PML boundaries.

The model will be padded at every sides by b grids with the same velocity as the boarder

grid and damping function (σ(x)). Therefore, the extended model will have a size of

nnx and nnz which calculated from nx+2(b+1) and nz+2(b+1). The P-wave veloc-

ity at every point of the model (c) will be used to calculate the bulk modulus K with the

assumption of constant density (ρ) by a formular K = c2/ρ. After the parameterizarion

has done, the model will be smoothed to be used as an initial model. In this study, a

selected method for smoothing the model is a Gaussian blur. An idea of Gaussian blur

or Gaussian smoothing is a convolution of Guassian function with the image to reduce

its detail and noise. The Guassian function (G), used in this work, is a two-dimensional

function which has the form of

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (3.1)

Note that σ here refers to standard deviation of the Gaussian distribution, and a visual-

ization of G is shown in Figure 3.8. After the convolution the smoothed velocity model

is ready to be used in furthur procedure.

Figure 3.8: 2D Guassian distribution (σ = 0.2)

3.4 Generate Source
A duty of this process is generating source wavelet, time series, and defining

a source position. The wavelet used in this work is a Ricker wavelet which is generated
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in a time series with its peak at 1/f seconds where f is an assigned dominant source

frequency. Figure 3.9 shows the generated ricker wavelet with f = 5 Hz.

Figure 3.9: Ricker wavelet (f = 5 Hz)

A time series is defined by two variables which are record length (T ) and time interval

(∆t). The record length is defined by an assumption of the slowest wave propagating to

the bottom of the model and back to the surface. Hence, T is calculated by a two times

model depth (d) divided by the least value of c (T = 2d/cmin). dt is calculated based

on numerical stability according to Virieux (1986) which is h/
√

2cmax, but the input ∆t

can be scaled down by any particular factor. After T and ∆t are defined, the time series

can be produced by stepping up time value by ∆t from 0 to T . To define source position

in two-dimensional model, a coordinate of horizontal and vertical point is needed. In

this source code, the vertical point is fixed at the surface (sz = 0), and the horizontal

points (sx) are evenly-spread troughout the surface.

3.5 RTM Variables
As its name states, this section is created to define necessary variables for the

RTM method such as sources wavefield, receivers wavefield, seismogram, boundaries

wavefield, and RTM image. There are also variables that needed in CUDA API which

are block and grid size. The block size (B) used in this are 24× 24, and the grid size are
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defined by the problem size divided by 24. There are two grid size variables which are

G and Gr. G is accounted for the problem size nnx × nnz, while Gr is accounted for

the problem size nx × nz. Since this is a heterogeneous programming, these variables

are needed to be stored in both host and device memory. The host memory allocation

can be done by using function malloc for C programming, while the device memory

allocation can be done by using function cudaMalloc. However, struct variables can

not be allocate directly using cudaMalloc. This problem can be solved by allocating

the host variables by cudaMalloc and copy those memories by using cudaMemcpy to

the device variables. struct variables used in this code are seismogram (seis) from real

velocity model and boundaries wavefield (pn). The array of seis is used to segregate

the seismogram from sources in different position, while pn is used to store pressure

wavefield in each side of the boundaries (top, bottom, right, and left). This boundaries

wavefield struct type was also applied to the others wavefield as well.

3.6 Generate Seismogram
The seismogram can be generated by the forward modeling scheme that

simulates the propagation of source wavefield throughout the model. The seismogram

generated in this step is used as an observed shot record data, so it should be acquired

from the forward modeling of the true velocity model. A flowchart of this procedure is

shown in Figure 3.10. An initial wavefield will be initialized first before entering the

time loop. The advance timestep procedure refers to the FD calculation that results in

the value of the variable at the next timestep which can be seen in equation 3.2 as an

example.

pk+1
xi,j

= pkxi,j −∆tσi,jp
k
xi,j
− ∆tKi,j

∆x

(
vk+1/2
xi+1/2,j

− vk+1/2
xi−1/2,j

)
(3.2)

This FD calculation is done the kernel with the problem size of B and G as stated

earlier. After the calculation is done, the next step is applying the source amplitude to

the wavefield. The source injection is also called by a kernel, but it is called by only

a thread to perform an action to increase the amplitude of p wavefield at source point

by an amplitude of source wavelet at time step k. Then, the pressure wavefield at every

receivers location will be stored to make a shot record data. After that, the initial value
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of every wavefield will be replaced by the calculated data with the kernel with the block

and grid size B and G. At the end of time and source loop, the stack seimogram, which

is a pile of seismogram from every source, will be exported for an output file.

Figure 3.10: A flowchart of the forward modeling scheme

3.7 RTM Method
The RTM algorithm starts with the forward modeling of smooth model for

saving the boundary wavefield at every time step which has the workflow like that of Fig-

ure 3.10. Then, the backward time loop is started for the RTM algorithm. The boundary

wavefield is imported at every time step for the reconstruction of source wavefield, and

the seismogram is also imported as a source for backward-propagation receiver wave-

field. The boundary wavefield already contain the source amplitude, so it is depleted in

the eject source step. Instead of doing the FD calculation for increase time index, the

FD calculation is done for the decrease time index in the backward timestep procedure.

The example of the FD calculation of reconstructed wavefield is shown at equation 3.3.

pk−1xi,j
= pkxi,j −∆tσi,jp

k
xi,j
− ∆tKi,j

∆x

(
vk−1/2xi+1/2,j

− vk−1/2xi−1/2,j

)
(3.3)



Phudit Sombutsirinun Implementation / 30

Since, the backward-propagation equations are adjusted to be the form like wave equa-

tions. The FD calculation for receivers wavefield is also in the form of equation 3.3

as well. The differences are the change of variable from source to receivers wavefield,

and the source is the seismogram. These calculation are also called by the kernel with

problem size B and G. The reconstructed source wavefield and the backward-propation

receiver wavefield are crosscorrelated for the migrated image with the kernel that has

the grid and block size of Gr and B. Both source and receiver wavefield will be updated

at the end of each time loop. The RTM image will be stacked at every source loop and

export to host memory at the last iteration which marks the end of RTM method.

Figure 3.11: A flowchart of the RTM method
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3.8 LSRTM Variables
As usual, the accounted variables and parameter will be defined and declared

at the beginning of the algorithm. For LSRTM method, the perturbed wavefield variables

are needed for migrated image modeling, and three more image variables for gradient

of objective function, conjugate gradient, and optimized image. The gradient of objec-

tive function needs to have two parameters because there is a calculation that needs its

value at two different iteration. This reason should have be the same with the conjugate

gradient, but it can be technically neglected by the programming implementation. The

optimized image value will be copied from RTM image first, and it will be optimized

by the CG algorithm later. There are also variables that used in optimization such as

two-norm squares of residual data that indicates the convergence rate, alpha (α), and

beta (β). The calculation of residual data and α require the seismogram from migrated

image modeling, so another seismogram variable is also defined. The only parameter in

this step is an iteration number (iter) that limit the optimization loop.

3.9 Migrated Image Modeling
Apart from simulating the perturbed wavefield, this step also need to sim-

ulating the source wavefields for the secondary source used in modeling from RTM

image. Hence, the migrated image modeling flowchart, shown in Figure 3.12 displays

two advance time stepping schemes. The first one is for the source wavefields. Then, the

wavefields will be injected with source and recorded on boundaries. Next, the second

one is called for modeling image. As same as the previous FD calculation, the kernels

used here are called with the size of B and G. The perturbed wavefields will be added

by the multiplication of migrated image, bulk modulus, and a temporal derivative of ve-

locity wavefield in the inject secondary source step. The injection of secondary source

is called by the kernel size B and Gr due to the included migrated image. The perturbed

wavefield is recorded for the simulated data, used in objective fucntion. After source

loop is completed, the two-norm squares of residual data is calculated, and this value at

each iteration will be exported to be plotted as a convergent rate graph.
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Figure 3.12: The migrated image modeling flowchart

3.10 Gradient of Objective Function Computation
It has already stated that the gradient of objective function can be achieved

by applying RTM method to a residual data. Therefore, the flowchart in Figure 3.13

shows the resemblace to the flowchart of RTM method. The residual data is imported

instead of the seismogram as a source of receivers wavefield. After the FD calculation

and imaging condition scheme, the acquired image is the gradient of objective function.
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Figure 3.13: The gradient of objective function computation flowchart

3.11 Conjugate Gradient Method
The obtained gradient of objective function in the last step will go through

the conjugate gradient scheme. On the first iteration of optimization loop, the conjugate

gradient value will be equal to the minus value of that of the gradient of objective func-

tion. For the remaining iteration, the gradient of objective function from current and

previous iteration will be used to calculate the parameter β by equation (2.33). Then,

this parameter will be used to create the conjugated image by multiplying β with the

gradient of objective function and updated to conjugated image according to equation

(2.34). Then, the last step in an optimization iteration which is the model optimization.

However, there will be another modeling algorithm before updating the model. The ne-

cessity of modeling is a denominator in the stepping parameter α. As shown in equation

(2.35), the image from conjugate gradient scheme will be put through the forward mod-
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eling operation. After the modelling is completed, the parameter α will be calculated

and used to optimize the model by equation (2.36). The process of inversion will con-

tinue untill it reaches the defined maximum number of iteration. Lastly, the optimized

image will be exported as a result of least-squares reverse time migration.

Figure 3.14: Conjugate gradient method flowchart
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CHAPTER IV
NUMERICAL RESULTS

Apart from LSRTM image, there are also another results that need to be con-

sidered. The first one is a wavefield simulation in a homogeneous medium for wavefield

reconstruction test. Following by the seismogram which is the result of forward mod-

eling. Then, there are the migrated images that include migrated image (RTM image)

and optimized migrated image (LSRTM image). Comparing RTM and LSRTM image

can be visualized by convergence plot which shows the squares of two-norm of residual

data at each iteration. Lastly, the speedup ratio acquired from the GPU implementation

is shown.

4.1 Wavefield Reconstruction
By simulating wavefield propagation in the homogeneous medium, the form

of propagated wave and also the effectiveness of PML boundaries can be observed as

seen in Figure 4.1a and 4.1b. In Figure 4.1a, a circular wavefield is displayed as expected

from a propagating wavefield from a point source. In Figure 4.1b, the wavefield starts

to hit the borders which is the red square. While entering PML region, the effect of

PML absorption can be seen by a faded yellow band of wavefield. Next, the wavefield

will be simulated inward from the boundaries. An expected result would be an identical

waveform of both outward and inward wavefield which is exactly what Figure 4.1 shows.
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(a) (b)

(c) (d)

Figure 4.1: Wavefield propagation in a homogeneous medium (a) shows a forward prop-

agation at 0.16617 s and (b) at 0.22156 s. A backward propagation at 0.22156 s and

0.16617 s are displayed at (d) and (c), respectively. A red square line indicate the phys-

ical region.
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4.2 Two-Horizontal Layered Model
After the wavefield is verified, LSRTM algorithm will be tested on a simple

model which is a two-horizontal layered model. A strong point of simple model is

its results can be effortlessly analyzed. In this section, seismogram, migration image,

and optimized migration image will be finely break down. Our two-horizontal layered

model will be shown in Figure 4.2 where a true velocity model is on the left panel and

the smooth version is on the right panel. The first layer has P-wave velocity value of

600 m/s while that of the lower one is 1200 m/s. The discontinuity in the true velocity

model will be smoothed by Guassian filter and becomes a gradually increase velocity

value region in the smooth velocity model. The model grid mesh is 101×101 with the

grid size of 2 m, PML boundary consists of 20 grids.
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Figure 4.2: P-wave velocity model (left) and smooth P-wave velocity model (right) of

the two-horizontal layered model

Next, forward modeling scheme was operated on true velocity model with

a 20-Hz source at position nx = 50 and nz = 0 which is on the middle of the surface.

A seismogram produced from this operation is shown in Figure 4.3. There are three

seismic events detected in this seismogram which are direct wave, reflected wave, and

boundary reflection wave, which labeled as D and R in Figure 4.3. Direct wave is a

wave that propagates directly from the sources to the receivers. Therefore, Direct wave



Phudit Sombutsirinun Numerical Results / 38

will travel with the velocity of the first layer which results in the linear line. Reflected

wave is wave that reflected from the discontinuity in the medium which is displayed as

a parabola curve in the seismogram.

Seismogram
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Figure 4.3: Seismogram of two-layered model with label of seismic events, D for direct

wave, R for reflect wave

Then, the remaining algorithm of LSRTM were operated on the model until

it was completed. The products of this operation are shown in Figure 4.4 and 4.5 which

are migration image, optimized migration image, and convergence graph. The migration

image on the left panel of Figure 4.4 shows two-high amplitude region which are on the

surface and around 50-75 meters along the vertical direction. There is also a V-shape

image between those two regions. After fifteen iterations of optimization, the optimized

migratiom image on the right panel of Figure 4.4 displays only the high ampltiude region

which is the one at 50-75 meters along the vertical direction. It is vivid that conjugate

gradient algorithm was trying to eliminate the top surface part of the image. Since the

initial model is known, the expected result is the image at the 50-75 meters along the

vertical direction which both migration and optimized migration have it. However, the

migration image contains the noise on the top that was later dealt with by the optimiza-

tion. In addition, the success of CG algorithm is also presented by a convergence graph
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in Figure 4.5 which shows the exponentialy decrease of residual value in each iteration.

For clarification, this characteristic depicts a decrease of residual value by CG algorithm

along the opposite gradient direction. When the residual value reached its minimum, it

did not rise up again even the continuing CG algorithm.
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Figure 4.4: Migrated images from the LSRTM method on two-layered model with 1

20-Hz source
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Figure 4.5: Residual graph of LSRTM on two-layered model with 1 20-Hz source

Next, the LSRTM algorithm was operated with ten 20-Hz sources distributed

on the surface. The migration image on the left panel of Figure 4.6 shows the high-

amplitude region on the surface with the faint straight line lies around 60 meters along
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the vertical direction. Despite the reduction of noise between surface and reflector from

stacking, the noise on the surface is too strong that it stands out more than the reflector

which is the expected image. On the other hand, the optimized image on the right

panel of Figure 4.6 displays a diluted noise on the surface and the more concentrated

image below. However, the continuity line is not the only part that its amplitude got

boost up. Another noticable image may came from the crosscorrelation between source

and receiver wavefields at the area that is not the reflector. Inspite of this problem, the

residual graph in Figure 4.7 still shows the convergence.
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Figure 4.6: Migrated images from the LSRTM method on two-layered model with 10

20-Hz sources
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Figure 4.7: Residual graph of LSRTM on two-layered model with 10 20-Hz sources

Since RTM and LSRTM images are both generated from operator LT with

the difference in operand (D and d − D), the next operation will generate RTM and

LSRTM image with the residual data to see if the resolution will get better. For RTM,

the simulated data d is acquired from the forward modeling on smooth velocity model.

The test setting is as same as that of Figure 4.6.
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Figure 4.8: Migrated images from the LSRTM method (RTM image from residual data)

on two-layered model with 10 20-Hz sources
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Figure 4.9: Residual graph of LSRTM (RTM image from residual data) on two-layered

model with 10 20-Hz sources

The noise on the surface is siginificantly reduced on both RTM and LSRTM images

in Figure 4.8, since , but the optimization is also effective only on the surface. The

residual graph in Figure 4.9 still reduced exponentialy but much less steeply that that of

Figure 4.7. The next experiment will focus on how to make the optimization improve

the resolution at the reflectivity. A hypothesis is the optimization tries to dilute the noise

on the surface because the direct wave is too strong. Therefore, the next set of results

will be operated with muted direct wave on conventional LSRTM. A procedure to mute

the direct wave is simple and straightforward. Another seismogram is generated on a

homogeneous model that has the wave velocity equal to that of the first layer of test

model. That seismogram should consist only direct wave that will be used to delete

direct wave from the real seismogram. This procedure was tested on two-layered model

with one source, and the results are shown in Figure 4.10.



Fac. of Grad. Studies, Mahidol Univ. M.Sc. (Physics) / 43

Seismogram

0 20 40 60 80 100 120 140 160 180 200

Horizontal Distances (m)

0.1

0.2

0.3

0.4

0.5

0.6

T
ra

v
e

l 
T

im
e

 (
s
)

-8

-6

-4

-2

0

2

4

A
m

p
lit

u
d
e

10
-3

(a) Seismogram of two-layered model
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(b) Seismogram of homogeneous model
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(c) Seismogram with muted direct wave of two-layered model

Figure 4.10: Procedure to mute the direct wave from seismogram of two-layered model

The test setting of this experiment is still as same as that of Figure 4.6. The numer-

ical results from LSRTM method with muted direct wave exhibit an improvement in

reducing artifact. Unlike images from the last two trial, the standing-out amplitude is

on the reflector position as seen in Figure 4.11. However, the same problem still stands

which is the optimization still operated mainly on the surface. Despite this issue, the

convergence plot in Figure 4.12 still show an exponential decrease.
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Figure 4.11: Migrated images from the LSRTM method (muted direct wave) on two-

layered model with 10 20-Hz sources
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Figure 4.12: Residual graph of LSRTM (muted direct wave) on two-layered model with

10 20-Hz sources

Next, the extreme measure will be taken to make the inversion scheme op-

timize the reflectivity. That procedure is to mute every thing on and below the surface.

The test still conducted on the two-layered model with ten sources, while ten grids at

the top of the model will be muted from RTM image and during the inversion scheme.

The results shown in Figure 4.13 display the improvement of reflectivity image by the
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inversion scheme. Due to the inteference during the inversion, the residual in Figure

4.14 is almost linear.
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Figure 4.13: Migrated images from the LSRTM method (muted surface) on two-layered

model with 10 20-Hz sources
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Figure 4.14: Residual graph of LSRTM (muted surface) on two-layered model with 10

20-Hz sources
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4.3 Marmousi Model
Marmousi model was created by the Institut Français du Pétrole (IFP) in

1988, which its geometry is based on a profile through the North Quenguela trough in

the Cuanza basin. This model is used as a test for seismic imaging and inversion scheme

due to its complexity and high velocity contrast. Marmousi model size is 9.2 kilometers

in horizontal distances and 3 kilometers in depth. The velocity model of Marmousi used

in this work is divided into 461×151 mesh with the grid size of 20 meters. The PML

boundary still consists of 20 grids for each side. A P-wave velocity model of Marmousi

and its smoothed version are shown in Figure 4.15.
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Smooth P-wave Velocity Model
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Figure 4.15: P-wave velocity model (left) and smooth P-wave velocity model (right) of

Marmousi model

First, a seismogram is displayed in Figure 4.16. Compare to the seismogram

of two-layered model, the seismogram of Marmousi model is much more complex. In-

terpretation of the structure from the seismogram is out of the question, but we can still

detect the direct wave, lots of reflected waves, and boundary reflection.
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Seismogram
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Figure 4.16: Seismogram of Marmousi model

Next, the LSRTM algorithm was operated with thirty-one 5-Hz sources

equally distributed on the surface. The deominant frequency of the source is toned

down to 5 Hz due to the numeral dispersion limit. The RTM image on the left panel

of Figure 4.17 is able to display the bent layers, faults, and syncline structure, but the

surface is tainted by the noise from sources. The inversion scheme is able to remove

those noise and illuminate the structure below. However, the unwanted crosscorrelation

noise is boomed up, and hindered the structure below the surface. The convergence plot

in Figure 4.18 displays the exponential reduction of residual data along the iteration.
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RTM Image
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Figure 4.17: Migrated images from the LSRTM method on Marmousi model with 31

5-Hz sources
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Figure 4.18: Residual graph of LSRTM on Marmousi model with 31 5-Hz sources

Similar to the experiment on two-layered model, the LSRTM algorithm with

RTM image from the residual data and muted direct wave were tested on Marmousi

model. Figure 4.19 and 4.20 show the numerical results from the LSRTM algorithm

that generates RTM image from the residual data. The structure is more illuminated

than that of the conventional LSRTM, but the surface is heavily tainted by the noise.

Those noise is reduced on the optimized image, but the 15 iterations of inversion loop is
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not enough for diluting it. Looking at the convergence plot, the residual value could go

lower with more iteration.
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Figure 4.19: Migrated images from the LSRTM method (RTM image from residual

data) on Marmousi model with 31 5-Hz sources
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Figure 4.20: Residual graph of LSRTM method (RTM image from residual data) on

Marmousi model with 31 5-Hz sources

Seeing how the image around surface contains lots of noise, muting direct

wave should improve its resolution. In consequences, the LSTRM algorithm with muted

direct wave was applied. Figure 4.21 shows that the dominance of reflect waves are
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exerted. The results in Figure 4.22 are met with the expectation since the surface is

much less tainted with the noise, and rhe less noise results in more vivid structure.

Despite a similarity between RTM and LSRTM image, the residual value in Figure 4.23

still reduced exponentially.
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(a) Seismogram of Marmousi model
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(b) Seismogram of homogeneous model
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(c) Seismogram with muted direct wave of Marmousi model

Figure 4.21: Procedure to mute the direct wave from seismogram of Marmousi model
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Figure 4.22: Migrated images from the LSRTM method (muted direct wave) on Mar-

mousi model with 31 5-Hz sources
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Figure 4.23: Residual graph of the LSRTM method (muted direct wave) on Marmousi

model with 31 5-Hz sources

Next, an acquisition setting consists of 101 5-Hz sources evenly distributed

along the surface is placed. A goal of this setting is to test the improvement of image

resolution and reduction of noise around the surface through the addition of sources. As

expected, Figure 4.24 exhibits more resolution with lower noise. The structure below



Phudit Sombutsirinun Numerical Results / 52

also sharpen up by the inversion scheme. The sharpen structure gets more noticable

when the images are filtered by the differential filter in Figure 4.25. Applying differential

filter will remove the low frequency noise from the image which will make the structure

stands out more. With 101 sources, the residual value in each iteration shown in Figure

4.26 is steeply reduced unlike that of the 31 sources. A change of LSRTM image during

the inversion scheme in Figure 4.27 emphasizes the quick converge of the residual graph.

The first iteration of LSRTM image already has a noticable difference from RTM image,

but the image in iteration 4 alters the image even more. From iteration 4 and forth, there

is a little change on image. The only spottable change is the reducing noise which is on

the surface.
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Figure 4.24: Migrated images from the LSRTM method on Marmousi model with 101

5-Hz sources
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RTM Image

with Differential Filter
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Figure 4.25: Migrated images with differential filter from the LSRTM method on Mar-

mousi model with 101 5-Hz sources
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Figure 4.26: Residual graph of the LSRTM method on Marmousi model with 101 5-Hz

sources)
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Figure 4.27: A change of migrated image during the inversion scheme

The identical problem from migrated images of Marmousmodel is the 5-Hz

source is too broad to cover the complexity of Marmousi model. However, 5 Hz is the

maximum frequency to be used without the occurance of grid dispersion effect in this

setting. Hence, a finer velocity model is needed. This velocity model of Marmousi has

921×301 mesh with the grid size of 10 meters. The PML boundary still consists of 20

grids for each side. Now, the higher frequency is allowed with 10 Hz. The LSRTM algo-

rithm was operated with thirty-one sources equally distributed on the surface. Both RTM

and LSRTM images in Figure 4.28 show much sharper of geologic structure. A habit of

inversion scheme is still similar to the images of 5-Hz source,but with the lower noise

on the surface and easier distinquish of image improvement. The sharper and refined

structure is confirmed by the differential filtering in Figure 4.29, while the convergence

plot still bear the same characteristic.
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Figure 4.28: Migrated images from the LSRTM method on Marmousi model with 31

10-Hz sources
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Figure 4.29: Migrated images with differential filter from the LSRTM method on Mar-

mousi model with 31 10-Hz sources
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Figure 4.30: Residual graph of the LSRTM method on Marmousi model with 31 10-Hz

sources

A better image resolution is expected when more sources are added in the

process. Figure 4.31 shows more vivid structure and less noise compare to the migrated

images of 31 10-Hz sources (Figure 4.28). The clear and accurate structure is shown

after applying the differential filter to the migrated images in Figure 4.32. The conver-

gence rate in Figure 4.33 is also steeper compare to that of the 31 sources due to more

accurate data from sources additional. The residual data during the inversion scheme is

also shown in Figure 4.34. Notice that the residual data is getting lower and lower in

each iteratio which indicates the better fit between observe and simulated data.
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Figure 4.31: Migrated images from the LSRTM method on Marmousi model with 71

10-Hz sources
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Figure 4.32: Migrated images with differential filter from the LSRTM method on Mar-

mousi model with 71 10-Hz sources
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Figure 4.33: Residual graph of the LSRTM method on Marmousi model with 71 10-Hz

sources
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Figure 4.34: Residual data of the Marmousi model with 71 10-Hz sources in each itera-

tion
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4.4 Speedup Factor
An efficiency of GPU implementation can be measured by a speedup factor.

The speedup factor enumerates how much faster is GPU processing than that of CPU

which can be formulated into

Speedup factor =
CPU runtime
GPU runtime

(4.1)

There are two processes that are measured which are FD calculation and fifteen iterations

of LSRTM algorithm. The hardware of this test consists of Intel(R) Core (TM) i7-7700

HQ CPU @ 2.80 GHz and NVIDIA GeForce GTX 1050 Ti. The FD calculation and

LSRTM algorithm were tested on different numbers of data and the speedup factors of

each operation are measured as shown in Figure 4.35 and 4.36. The acquired speedup

factor is around 14-15 times for FD calculation and 12-13 times for LSRTM algorithm.

The beginning speedup factor is quite low due to the numbers of data is too small to

emphasize the GPU efficiency compares to that of CPU. The lower speedup factor of

LSRTM algorithm campares to FD calculation can be caused by the communication of

host and device during the progress.
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Figure 4.35: The runtime of FD calculation with varied numbers of data of CPU (Orange

line) and GPU (Blue line) with the speedup factor in each problem size (Yellow line)
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CHAPTER V
CONCLUSION

5.1 Conclusion
Least-square reverse time migration (LSRTM) method is one of the reflec-

tion seismic imaging method that improve the migrated image by applying least-squares

inversion to reverse time migration (RTM) method. By computing the gradient of ob-

jective function with the adjoint-state method, LSRTM can be viewed as applying RTM

method iteratively. One of the drawbacks of LSRTM method is the high computational

cost, and we tried to solve this problem by implement LSRTM algorithm with GPU

programming by CUDA API. Our developed LSRTM algorithm is capable of imaging

a complex subsurface structure but the image around the surface is tainted by the noise.

The extra implementation of up-down separation should diminish those noise below the

surface which may lead to the improvement of image quality. The inversion scheme in

LSRTM algorithm reduced the value of objective function exponentially, and made the

geologic structure more vivid. With the additional of kernel function in GPU implemen-

tation, the total runtime of GPU-based LSRTM is about 12-to-13 times faster than that

of CPU-based LSRTM for single GPU implementation.

5.2 Possible Improvement
There two possible improvement of this work which are reducing the artifact

around the surface for better image resolution, and implementation of multiple GPUs to

deal with a larger size of data. Liu et al. (2011) stated that since the receiver wave-

field shared a path with the source wavefield, the conventional imaging condition would

surely produce an artifact. However, there is a point where the directions of source and

receiver wavefields contradict each other, and that point is the reflector. Therefore, the

proposed imaging condition of Liu et al. (2011) only consist of the crosscorrelation of
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the downward propagating of source wavefield and the upward propagation of receiver

wavefields and vice versa. The comparison between conventional and proposed imag-

ing condition is shown in Figure 5.1. The noise elimination from the work of Liu et al.

(2011) is worth to try for better migrated image resolution in our work.

(a) (b)

Figure 5.1: RTM image with (a) conventional imaging condition and (b) Liu et al. (2011)

imaging condition from Liu et al. (2011)

With larger problem size, more resources are needed to operared. Weiss and Shragge

(2013) proposed an effective way to implement multiple GPUs in FD calculation by

using CUDA’s P2P communication instead of MPI-based communication. Weiss and

Shragge (2013)’s ewef2d grants 10 times speedup, whereas ewefd3d yields 16 times

speedup for single GPU and 28 times speedup for two GPUs.
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Figure 5.2: Performance metrics showing the mean of ten trials for various cube (N3)

model domains using the ewefd3d code. (a) Computational run time for CPU (green

line), a single GPU (blue line), two GPUs with MPI communication (red line), and two

GPU with P2P communication (magenta line). (b) Speedup relative to CPU for a single

GPU (red line), and two GPUs with MPI (blue line) and P2P communication (magenta

line). (c) Relative speed for the P2P versus MPI communication.
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