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▪ A fluid is a substance with no shear strength, i.e., its shear modulus is zero.

▪ Although a fluid is composed of a large number of molecules, we can 

approximately treat a fluid as a continuous substance.

▪ A flow of a fluid is due to an external force such as a pressure difference, 

gravity, wind, and surface tension.

▪ External forces can be classified as surface forces and body forces.

▪ The most important fluid properties are mass density and viscosity.

▪ Other fluid properties affect fluid flows only under some conditions.

Fluids

Ferziger et al. (2020)
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▪ The flow speed is low enough that inertia forces are small compared to 

viscous forces, i.e., the Reynolds number Re << 1.

▪ The Reynolds number is the ratio of inertial forces to viscous forces.

▪ The Reynolds number is defined as                                   where  is the 

fluid density, u is the flow speed, L is the characteristic length,  is dynamic 

viscosity, and  =  / is kinematic viscosity.

▪ This flow regime is important in flows with small particles or flows in 

porous media.

▪ Creeping flows are governed by the Stokes equations, a linearized, steady-

state version of the Navier-Stokes equations.

Creeping Flows or Stokes Flows

Ferziger et al. (2020)
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▪ Laminar flows: At a larger flow speed such that the inertia is not negligible 

and fluid particles still follow smooth trajectories.

▪ In the laminar flow regime the Reynolds number is smaller than a critical 

value beyond which the flow becomes turbulent: Re < Recritical.

▪ Turbulent flows: When the flow speed is so large that an instability occurs, 

various random flows could happen.

▪ Laminar-turbulent transition: A transition from laminar flows to turbulent 

flows occur when the Reynolds number is in a certain range specific to the 

situation.

Laminar and Turbulent Flows

Ferziger et al. (2020)

https://www.bronkhorst.com/int/blog-1/what-is-the-difference-between-laminar-flow-and-turbulent-flow/
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▪ In 1883, Osborne Reynolds varied the flow rate of a dyed water jet to study 

the behavior of water flow.

▪ The laminar-turbulent transition occurs when 2000 < Re < 13000.

Reynolds' Experiment

https://en.wikipedia.org/wiki/Laminar%E2%80%93turbulent_transition
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▪ The Mach number Ma is the ratio of the local flow speed u to the local 

sound speed c: Ma = u/c.

▪ Incompressible flows (fluid density is considered a constant): Ma < 0.3

▪ Compressible flows: Ma  0.3

▪ Hypersonic flows: When Ma > 5, "the compression may create high enough 

temperatures to change the chemical nature of fluid." Ferziger et al. (2020)

Mach Number Flow Regimes

https://en.wikipedia.org/wiki/Compressible_flow#Mach_number,_wave_motion,_and_sonic_speed
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Eulerian and Lagrangian Viewpoints

Anderson (1995, p. 41)

Eulerian Viewpoint Lagrangian Viewpoint
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▪ The material derivative is a total derivative that represents time rate of 

change due to both local change and convective change.

Material Derivative
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Eulerian viewpoint Lagrangian viewpoint

Time Rate of Change

Local derivative Convective derivative

Scalar quantity:

Vector quantity:
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▪ Consider a finite control volume fixed in space

▪ Net mass flow out of control volume through surface S is equal to time rate 

of decrease of mass inside control volume.

Continuity Equation: Eulerian Viewpoint

Anderson (1995)
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▪ Mass flow across a small fixed surface dS is

▪ The sign of              is positive for an outflow, and is negative for an inflow.

▪ Net mass flow out of the control volume through surface S is

▪ The total mass in the control volume is

▪ The time rate of increase of mass is then

▪ Applying the conservation of mass principle, we obtain the conservative 

form of the continuity equation

Continuity Equation: Eulerian Viewpoint
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▪ The integral form of the continuity equation is

▪ Applying the divergence theorem to the second term, the surface integral 

becomes a volume integral and the continuity equation becomes

▪ Since the volume integral is zero, the integrand must vanish.

▪ So, we obtain the differential form of the continuity equation

Continuity Equation: Eulerian Viewpoint
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▪ Let’s consider a finite control volume moving with the fluid.

▪ The total mass of thefinite control volume is

▪ Since the total mass of finite control volume is always the same, we obtain 

the nonconservative form of the continuity equation

Continuity Equation: Lagrangian Viewpoint

Anderson (1995)
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Let’s consider an infinitesimally small fluid element moving with the flow.

The mass of the fluid element is

Since the time rate of change of the mass of fluid element is zero, we obtain

which leads to

Continuity Equation: Differential Form

Anderson (1995)
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▪ Consider a control volume moving with the fluid.

▪ This control volume has a fixed mass but a changing volume.

▪ Consider an infinitesimal surface element dS moving at local velocity v.

▪ The change in volume due to just the movement of dS is 

Divergence of Velocity

Anderson (1995)
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The total change in volume of the whole control volume is the surface integral

Dividing by t, we obtain the time rate of change of the control volume

If the moving control volume is shrunk to a very small volume V becoming 

an infinitesimal fluid element, we then have

Divergence of Velocity

Anderson (1995)
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Assume that V is small enough such that           is the same throughout V. 

We then obtain

Using the previous result, the non-conservative, differential form of continuity 

equation becomes

Continuity Equation: Differential Form

Anderson (1995)
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Continuity Equation

Anderson (1995)
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Consider a fluid element 

moving with the flow.

Newton’s second law

Momentum Equation

Anderson (1995)
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“Body forces act directly on the volumetric mass of the fluid element. These 

forces act at a distance. Examples: gravitational, electric, and magnetic 

forces.”

“Surface forces acting directly on the surface of the fluid element are due to 2 

sources:

▪ Pressure distribution on the surface imposed by the surrounding fluid

▪ Shear and normal stress distributions imposed outside fluid by means of 

friction”

Body and Surface Forces

Anderson (1995)
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Body force on fluid element acting in

x direction:

y direction:

z direction:

Net Body Force

Anderson (1995)
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Net surface force in x direction is

Surface Force in x direction

Anderson (1995)
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Net surface force in

x direction:

y direction:

z direction:

Net Surface Force

Anderson (1995)
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Mass

Acceleration in

x direction:

y direction:

z direction:

Mass and Acceleration

Anderson (1995)
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Combining the previous results yields momentum equation in 

nonconservative form

Navier-Stokes Equations

Anderson (1995)
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▪ In the Eulerian viewpoint with a fixed control volume, the momentum 

conservation gives rise to the equation

▪ The force F could be

• surface forces (pressure, normal and shear stresses, surface tension)

• body forces (gravity, centrifugal and Coriolis forces, EM forces)

▪ To make the system of equations close (the number of dependent variables 

is equal to the number of equations), some assumptions must be made.

▪ One simple assumption is to assume that the fluid is Newtonian.

Momentum Conservation

Ferziger et al. (2020)
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▪ The stress tensor T of Newtonian fluids can be written as

where p is static pressure,  is dynamic viscosity, I is unit tensor, D is the 

rate of strain tensor:

▪ These two equations can be written in index notation as

The Einstein summation convention

is used here. The viscous part of the stress 

tensor is usually denoted as

Newtonian Fluids

Ferziger et al. (2020)
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▪ When there are only stress tensor T and the body force per unit mass b, the 

momentum conservation equation becomes

▪ Applying the convergence theorem to the surface integrals, we obtain

▪ The integrand must vanish. So, we obtain the differential form of the 

momentum equation

Momentum Equation

Ferziger et al. (2020)
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▪ The conservative equation for the ith component is

where 

and ei is the ith Cartesian basis vector.

Conservative Momentum Equation

Ferziger et al. (2020, p. 9)



30

▪ The nonconservative equation can be obtained as follows.

▪ Using the differential form of the continuity equation, the bracket term 

vanishes.

▪ Then, we obtain the nonconservative momentum equation

▪ This equation is usually solved using the finite difference method.

Nonconservative Momentum Equation

Ferziger et al. (2020, p. 9)
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The conservative equation

can be written in index notation as

If gravity is the only external force, then we have

where gi is the ith component of gravitational acceleration g.

Conservative Momentum Equation

Ferziger et al. (2020, p. 9)
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▪ “A viscous flow is one where the transport phenomena of friction, thermal 

conduction, and/or mass diffusion are included.”

▪ The continuity, momentum, and energy equations previously mentioned are 

collectively called the Navier-Stokes equations.

▪ “Inviscid flow is a flow where the dissipative, transport phenomena of 

viscosity, mass diffusion, and thermal conductivity are neglected, resulting 

to Euler equations."

Navier-Stokes and Euler Equations

Ferziger et al. (2020, p. 9)
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▪ Using normalization the governing equations can be transformed into a 

dimensionless form.

▪ Velocities can be normalized by a reference velocity v0.

▪ Spatial coordinates can be normalized by a reference length L.

▪ Time can be normalized by a reference time t0.

▪ Pressure can be normalized by a reference pressure 

▪ Temperature can be normalized by a temperature difference T1 -T0.

Dimensionless Form of the Equations

Ferziger et al. (2020, p. 9)
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"If the fluid properties are constant, the dimensionless form of the continuity, 

momentum, and temperature equations are"

where the Strouhal number St, the Reynolds number Re, and the Froude 

number Fr are defined as

and i is the ith component of the normalized gravitational acceleration.

Dimensionless Form of the Equations

Ferziger et al. (2020, p. 11-12)
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▪ The density of liquids can be considered constant.

▪ When Ma < 0.3, the density of gases can also be considered constant.

▪ Flows in such media are said to be incompressible.

▪ If the flow is isothermal and the viscosity is constant, the continuity and 

momentum equations reduce to

Incompressible Flows

Ferziger et al. (2020, p. 13)
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▪ "In flows far from solid surfaces, the effects of viscosity are usually small."

▪ "If viscous effects are negligible, i.e., the stress tensor reduces to               , 

the Navier-Stokes equations reduce to the Euler equations."

▪ In an inviscid flow, the fluid will not stick to walls and slip will occur at 

solid boundaries.

▪ "The Euler equations are often used to study compressible flows at high 

Mach numbers."

▪ The Euler equations can be solved using a coarser grid than the Navier-

Stokes equations due to the absence of boundary layers in which viscosity 

effects are important.

Inviscid (Euler) Flows

Ferziger et al. (2020, p. 13-14)
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▪ In a potential flow, the fluid is assumed to be inviscid and the flow velocity 

is irrotational, i.e.,

▪ As a result, there exists a velocity potential  such that

▪ In an incompressible flow, the continuity equation becomes the Laplace 

equation

▪ The velocity vectors are tangential to streamlines which are the lines of 

constant streamfunction .

▪ Streamlines are orthogonal to equipotential lines.

▪ "Potential flows have applications in flows in porous media."

▪ "The potential theory applied to flow around a body leads to D'Alembert's 

paradoc, i.e., the body experiences neither drag nor lift."

Potential Flows

Ferziger et al. (2020, p. 15)
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▪ When Re << 1 (the fluid is very viscous or the object interacting with the 

fluid is very small), the convection (inertial) terms in the Navier-Stokes 

equation are very small and can be neglected.

▪ "The flow is then dominated by the viscous, pressure, and body forces."

▪ If the fluid properties are constant and the velocities are small, the unsteady 

terms can be neglected."

▪ The Navier-Stokes equation becomes the Stokes equations.

▪ "Creeping flows are found in porous media, coating technology, micro-

devices, etc."

Creeping (Stokes) Flows

Ferziger et al. (2020, p. 15)
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▪ "In flows accompanied by heat transfer, the fluid properties are normally 

functions of temperature."

▪ "If the density variation is not large, the density can be treated as constant in 

the unsteady and convection terms, and treat it as variable only in the 

gravitational term."

▪ "This is called the Boussinesq approximation."

▪ "The density is usually assumed to vary linearly with temperature."

Boussinesq Approximation

Ferziger et al. (2020, p. 15)
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▪ Air and water have low viscosity, and in many cases their flows have high 

Reynolds numbers, i.e., the viscous force is small compared to the inertia 

force.

▪ "In flows with high Reynolds numbers, the influence of viscosity is 

confined to a very thin boundary layer in the immediate neighborhood of 

the solid wall."

▪ Thus, the flow outside the boundary layer can be considered inviscid flows.

▪ Vorticity describing a rotational motion of fluid is defined as

▪ "Voriticities are generated by the shearing viscous forces."

▪ So, flows in the boundary layer are rotational flows.

▪ Outside the boundary layer, the flow can be considered irrotational, i.e., the 

vorticity vanishes:

Incompressible Potential Flows

Biringen and Chow (2011)
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▪ The irrotational condition                 is automatically satisfied if a velocity 

potential  is defined such that             .

▪ As a result, irrotational flows are also called potential flows.

▪ If the fluid is incompressible, then 

▪ We then have the Laplace equation

▪ In the problem of an incompressible flow past a body at high Reynolds 

numbers, the velocity potential outside the boundary layer is computed by 

solving the Laplace equation with the boundary condition prescribed far 

upstream and the fluid velocity be tangent to the body surface.

▪ The fluid velocity within the boundary layer is then obtained by solving the 

boundary layer equation using the velocity distribution of the external flow 

along the body surface as the outer boundary condition.

Incompressible Potential Flows

Biringen and Chow (2011)
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▪ "Once the velocity field in the external region is determined, the pressure 

field p can be computed by solving the Euler equation without body forces"

▪ "It is easier to compute the pressure from the Bernoulli equation, the 

integrated form of the Euler equation."

▪ For incompressible, irrotational flows, the Bernoulli equation has the form

where the constant of integration H is the Bernoulli constant and v = |v|.

▪ For steady flows, the Bernoulli equation reduces to                        where H 

is the stagnation pressure at a point where v = 0.

Incompressible Potential Flows

Biringen and Chow (2011)
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▪ Inviscid flow is the flow of a fluid with zero viscosity.

▪ Inviscid flows can be classified as potential flows (irrotational flows) and 

rotational inviscid flows.

▪ Potential or irrotational flows has zero vorticity, i.e.,                and the 

velocity potential  can defined such that

▪ If a potential flow is also incompressible, i.e.,              , the potential 
satisfies the Laplace equation

▪ 2D planar flows:

• Cartesian coordinates:

• Polar coordinates:

2D Incompressible Potential Flows
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▪ The stream function  can also be used instead of the velocity potential.

▪ The continuity equation v = 0 suggests that the velocity can also be 

expressed interm of the stream function as                       .

▪ A line along which  = constant is called a streamline.

▪ Fluid velocities are always tangential to streamlines.

▪ The irrotational condition becomes

▪ 2D planar flows:

• Cartesian coordinates:

• Polar coordinates:

2D Incompressible Potential Flows

Biringen and Chow (2011, p.53-54)
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Stream functions corresponding to 4 elementary flows are as follows.

(a) Uniform flow with angle 

(b) Line source with strength 

(c) Line vortex with circulation :

(d) Doublet with strength :

Elementary Flows

Biringen and Chow (2011, p.62)



(a) Uniform flow with angle  :

(b) Line source with strength :

(c) Line vortex with circulation :

(d) Doublet with strength :

46

Velocity Potentials of Elementary Flows



(a) Uniform flow with angle  :

(b) Line source with strength 

(c) Line vortex with circulation :

(d) Doublet with strength :
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Velocities of Elementary Flows



(a) Uniform flow with angle  :

(b) Line source with strength 

(c) Line vortex with circulation :

(d) Doublet with strength :

48

Velocities of Elementary Flows
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▪ If 1 and 2 are solution to              , a1 + b2 is also a solution.

▪ "When a source of strength  at (x0 - x, y0) is added to a sink of strength -

 at (x0 + x, y0), a new flow field is obtained."

▪ "By letting x approach zero while keeping the product 2x a constant , 

the stream function for a doublet at (x0, y0) is obtained."

▪ "The flow pattern of a double can also be produced by superimposing a 

vortex at (x0, y0 - y) to a vortex of opposite circulation at (x0, y0 + y), and 

then letting y approach zero."

▪ The velocities at the center of a line source, a line vortex, and a doublet are 

infinitely large. The center of these flows are called singularities.

▪ Singularities do not cause a problem when they are within the boundary of a 

rigid body.

Superposition of Elementary Flows

Biringen and Chow (2011, p.64)
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▪ The stream function for a uniform flow with  = 0 is 1 = -Uy.

▪ If a source of strength  with (x0 = 0, y0 = 0) and stream function                

is superimposed on the uniform flow, the resultant stream function is

where h = /2U is a characteristic length.

▪ The streamline BAB' with  = 0 is 

considered a solid surface enclosing the 

source.

▪ "The flow exterior to the surface satisfies 

the continuity equation and is irrotational."

Source in a Uniform Flow

Kuethe and Chow (1998, p.97)
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▪ "The flow field may be interpreted as that of a horizontal wind past a cliff, 

whose shape (y0, ) is described by the equation  = 0, that is,

where r0 is the radial distance of 

a point on the cliff at height y0

above the x axis."

When  → -, y0 → h = /2U.

Source in a Uniform Flow

Kuethe and Chow (1998, p.97)
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▪ With                         , the velocity components are

▪ According to these equation, the velocity vanishes (vx = vy = 0) at point 

(h/,0) = (/2U,0).

▪ "In other words, the velocity vanishes at point A on the x axis where the 

velocity from the source, /2 x, cancels the velocity U from the uniform 

flow."

Source in a Uniform Flow

Kuethe and Chow (1998, p.98)
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▪ Consider a source of strength  at (-x0, 0) and a sink of strength - at (x0, 0)

▪ The stream function of the combine flow at (x, y) is

▪ Using the trigonometric relation

we then obtain

Flow Pattern of a Source-Sink Pair

Kuethe and Chow (1998, p.99)
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▪ Rearranging the equation, we obtain

▪ "This equation represents a family of circles with centers on the y axis."

▪ "When y = 0, x = x0 for all values of ."

▪ The flow pattern is shown in the figure.

Flow Pattern of a Source-Sink Pair

Kuethe and Chow (1998, p.99-100)
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▪ The flow pattern of a doublet can be obtained "when the distance between 

the source and sink approaches zero while their strengths approach infinity 

in such a way that their product remains a constant value of                 ."

▪ As x0 approaches zero, we have

▪ In the limit, the velocity potential is

Flow Pattern of a Source-Sink Pair

Kuethe and Chow (1998, p.100)
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▪ The streamlines of a doublet flow of strength  (lines of constant ) are 

circles as can be seen by rearranging the equation in the form

▪ Each circle has a center are at (0, -/4) and

a radius of /4.

▪ All streamlines (circles) pass through the origin

Flow Pattern of a Source-Sink Pair

Kuethe and Chow (1998, p.101)
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▪ "The stream function for a uniform flow with velocity U in the direction of 

the positive x axis is  = Uy."

▪ "If the uniform flow is added to a doublet, the flow about a circular cylinder 

in a uniform stream is obtained."

▪ The resulting stream function is

▪ Let /2U = a2. Then, we have

▪ "The zero streamline consists of the x axis and

a circle of radius r = a."

Flow Past a Circular Cylinder

Kuethe and Chow (1998, p.101)
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▪ With y = r sin, the velocity components are

▪ On the cylinder surface (r = a), ur = 0 and u = -2U sin.

▪ The pressure distribution on the surface is given by the Bernoulli equation

where Cp is called the pressure coefficient.

Flow Past a Circular Cylinder

Kuethe and Chow (1998, p.101-102)



59

▪ "If a stream function for a vortex at origin is added to                              , 

the resulting stream function will satisfy the continuity, irrotationality, the 

boundary conditions for the circulatory flow about a circular cylinder in a 

uniform stream:"

▪ "The uniform stream is in the direction of the

positive x axis, and the circulatory flow is

clockwise."

▪ The zero streamline corresponds to a cylinder

of radius r = a.

Circulatory Flow about a Cylinder

Kuethe and Chow (1998, p.102)
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▪ The velocity components for this flow is as follows.

▪ On the cylinder surface (r = a), we have

▪ u vanishes when  = s:

▪ Since sin = y/r, the stagnation points are

Circulatory Flow about a Cylinder

Kuethe and Chow (1998, p.102-103)
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▪ "As  becomes large, the stagnation points move downward until           

equals a2; for this condition, the stagnation points coincide on the y axis at 

(0, -a)."

▪ When                         , the stagnation points leave the body and the 

equations                                               no longer hold.

Circulatory Flow about a Cylinder

Kuethe and Chow (1998, p.104)
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▪ Use a linear combination of the 4 elementary flows of your choice to 

generate a flow pattern.

▪ Plot streamlines and equipotential lines for the flow.

▪ Also plot the velocity fields.

Exercise
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▪ The velocity components can be computed from the velocity potential  and 

stream function  as follows.

▪ Both  and  satisfy the Laplace equation:

▪ Curves  = constant are called equipotential lines.

▪ Curves  = constant are called streamlines.

▪ In 2D flows, the equipotential lines and streamlines form two families of 

mutually orthogonal curves since 

Steady Potential Flows in 2D

Biringen and Chow (2011, p.76)
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▪ Let's construct a complex function from the velocity potential and the 

stream function as

▪ Since the real and imaginary parts of w satisfy the Cauchy-Riemann 

conditions, i.e.,

w(z) is complex-differentiable through out the region occupied by the fluid.

▪ In other words, w(z) is an analytic function of z.

▪ "If we choose an arbitrary analytic function w(z), the real and imaginary 

parts of the function are then qualify as the velocity potential and stream 

function of a potential flow in the x-y plane."

Analytic Function

Biringen and Chow (2011, p.76-77)
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▪ The complex function w(z) is called the complex potential, whose 

derivative is related to the velocity components as

▪ So, the magnitude of the velocity vector is 

▪ The complex potential corresponding to the uniform flow is

▪ The complex potential of the source is

▪ The complex potential of the vortex is

▪ The complex potential of the doublet is

▪ Here, z0 = x0 + iy0.

▪ The complex potential of the source, vortex, and doublet has a singular 

point at z0, where the first derivative of the function is unbounded.

Complex Potential

Biringen and Chow (2011, p.77)
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▪ Using the complex potentials given in the previous slide, plot the 

equipotential lines and streamlines of the 4 elementary flows and a linear 

combination of elementary flows.

Exercise
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▪ The principle of superposition of elementary flows can be applied to the 

complex potential to generate new flows.

▪ For example, the sum of Uz (uniform horizontal flow) and /2z (doublet at 

origin) represents the complex potential of a uniform flow past a circular 

cylinder of radius

▪ The method of conformal mapping can generate new flow patterns using 

coordinate transformations.

▪ Let z = f (z') where  f is an analytic function of z'.

▪ We then have

Conformal Mapping

Biringen and Chow (2011, p.78)



68

▪ "After being transformed into the z' plane, the complex potential can be 

written in terms of the new coordinates as"

▪ The curves ' = constant and ' = constant remain mutually orthogonal in 

the x'-y' plane after the transformation or mapping.

▪ Thus, this is called conformal mapping.

Conformal Mapping

Biringen and Chow (2011, p.78)
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▪ Consider the complex potential                                      of a uniform flow 

with speed U in the positive x direction. Let the mapping be z = z' 2.

▪ The complex potential becomes

▪ "The equipotential lines x = c (dashed lines) and streamlines y = k (solid 

lines) in the x-y plane are mapped into equipotential lines x' 2 - y' 2 = c and 

streamlines 2x'y' = k in the x'-y' plane, respectively."

Conformal Mapping: Example

Biringen and Chow (2011, p.80)
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Plot the equipotential lines and streamlines of the uniform flow

in the original domain, and those of the corresponding flow in the transformed 

domain

Exercise

Biringen and Chow (2011, p.80)
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Plot the equipotential lines and streamlines of the source flow, vortex flow, 

and doublet flow after using the conformal mapping z = z' 2.

Exercise
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